

中华人民共和国国家标准

GB/T 14909—2005 代替 GB/T 14909—1994

能量系统㶲分析技术导则

Technical guides for exergy analysis in energy system

2005-07-15 发布

2006-01-01 实施

前 言

本标准代替 GB/T 14909-1994《能量利用中的佣分析方法技术导则》。

本标准与 GB/T 14909-1994 相比主要变化如下:

- ——修改了关于本标准适用范围的表述,特别指出本标准不仅适用于一般的能量系统,也适用于 "产品生命周期评价"等新领域;
- ——修改了术语和定义的表述;
- ——更正了畑值的计算基准。包括更正了基准态压力和环境基准态下的大气组成,调整了个别元素的基准物质,增加了一些新的基准物质,使基准物质体系的元素总数达到80种;
- ---完善了㶲分析的评价指标,包括增加了㶲平衡和㶲效率的多项内容;
- ——完善了㶲分析的原则方法及结果表示中"评价与分析"的表述;
- ——简化了规范性附录中的多处表述(见附录 A 的起始处、A. 1、A. 4. 1、A. 4. 1. 1);
- ——基于正文中的元素的基准物质体系(见 3),重新核算了全部元素的标准㶲数值(见附录 A 的表 A. 3);
- ——基于元素的标准烟数值(见附录 A 的表 A.3),重新核算了"部分无机化合物的标准烟数值", 其中还调整了个别物质(见附录 A 的表 A.4);
- ——基于元素的标准佣数值(见附录 A 的表 A. 3),重新核算了"部分有机化合物的标准佣数值", 其中还调整了个别物质(见附录 A 的表 A. 5);
- ——修改了关于"稳定流动体系纯物质的㶲"和"稳定流动体系多组分物质的㶲"的表述和计算公式 (见附录 A 的 A. 4. 2 和 A. 4. 3);
- ——修改了资料性附录中的佣分析方法的计算实例的"锅炉的佣分析"的表述(见附录 B);
- ——更换了资料性附录"佣分析方法的计算实例"中的示例 2(见附录 B)。

本标准附录 A 为规范性附录, 附录 B 为资料性附录。

本标准由全国能源基础与管理标准化技术委员会提出。

本标准由全国能源基础与管理标准化技术委员会归口。

本标准起草单位:北京化工大学、华北电力大学、中国科学院工程热物理所、石油工业节能节水专业标准化技术委员会、北京国电华北电力工程有限公司、中石化洛阳石化工程公司工程研究院。

本标准主要起草人:郑丹星、武向红、宋之平、陈铭铮、俞伯炎、任晓东、郑战利。

本标准所代替标准的以往版本发布情况为:

----GB/T 14909-1994.

能量系统畑分析技术导则

1 范围

本标准规定了能量系统烟分析的基本概念与术语、烟值的计算基准、烟值的计算方法、烟平衡、烟分析的原则方法及结果表示等,并给出了烟分析方法的计算实例。

本标准适用于任何涉及能量利用或能量转换的过程、设备、工艺流程或系统,也适用于产品生命周期评价等环境保护方面相关问题的定量分析。

2 术语和定义

本标准采用下列术语和定义。

2. 1

体系 system

根据研究目的而确定的具有明确边界的分析对象。根据同一概念,体系内部还可以分割成两个或两个以上的子体系(subsystem)。

2.2

环境 environment

体系边界以外称为外界。环境是外界的一部分,是一个作为畑分析基准的特定的理想外界,由处于 完全平衡状态下的大气、地表和海洋中的选定基准物质所组成。

2.3

畑 exergy

体系与环境作用从所处的状态达到与环境相平衡状态的可逆过程中,对外界做出的功。

2.4

㶲损失 exergy loss

由于过程不可逆性所造成的体系作功能力的减少。

2.5

畑分析 exergy analysis

对能量系统㶲的传递、利用和损失等情况进行的分析。

3 烟值的计算

3.1 烟值的计算基准

㶲值的计算基准是环境参考态,它是基准物质体系在规定的温度、压力下的状态。

本标准规定㶲的基准态温度为 298.15 K(25℃),基准态压力为 0.1 MPa(1 bar);基准物质体系规定为:大气物质所含元素的基准物质取大气中的对应成分,其组成如表 1 所示,即在上述温度和压力条件下的饱和湿空气;氢的基准物质是液态水;其他元素的基准物质取表 2 中所列的纯物质。

						-		
	组分	N_2	O_2	Ar	CO ₂	Ne	He	H ₂ O
-	组成(摩尔分数)	0.756 1	0.2028	0.009 1	0.000 3	1.77 \times 10 ⁻⁵	5.08×10 ⁻⁶	0.031 67

表 1 环境参考态下的大气组成

GB/T 14909-2005

表 2 元素的基准物质

元素	基准物质	元素	基准物质	元素	基准物质
Ag	AgCl	Н	H₂O(液态)	Pr	PrF ₃
Al	Al ₂ O ₃	He	He(空气)	Pt	Pt
Ar	Ar(空气)	Hf	HfO ₂	Rb	Rb ₂ SO ₄
As	As_2O_5	Hg	HgCl ₂	Rh	Rh
Au	Au	Но	HoCl ₃ • 6H ₂ O	Ru	Ru
В	H ₃ BO ₃	I	PdI ₂	s	CaSO ₄ • 2H ₂ O
Ba	Ba(NO ₃) ₂	In	In ₂ O ₃	Sb	$\operatorname{Sb}_2\operatorname{O}_5$
Be	BeO • Al ₂ O ₃	Ir	Ir	Sc	Sc ₂ O ₃
Bi	BiOCl	К	KNO ₃	Se	SeO ₂
Br	PtBr ₂	Kr	Kr	Si	SiO ₂
С	CO₂(空气)	La	LaF ₃	Sm	SmCl ₃
Ca	CaCO ₃	Li	LiNO ₃	Sn	SnO ₂
Cd	CdCl ₂	Lu	Lu₂O₃	Sr	SrF ₂
Ce	CeO ₂	Mg	CaCO ₃ • MgCO ₃	Ta	Ta_2O_5
Cl	NaCl	Мо	CaMoO ₄	Tb	TbO_2
Со	CoFe ₂ O ₄	Mn	MnO ₂	Te	TeO ₂
Cr	Cr ₂ O ₃	N	N ₂ (空气)	Th	ThO ₂
Cs	CsNO₃	Na	NaNO ₃	Ti	TiO ₂
Cu	CuO	Nb	Nb ₂ O ₅	Tl	TlCl ₃
Dy	DyCl ₃ • 6H ₂ O	Nd	NdF ₃	Tm	Tm ₂ O ₃
Er	ErCl ₃ • 6H ₂ O	Ne	Ne(空气)	U	UO ₃ • H ₂ O
Eu	EuCl ₃ • 6H ₂ O	Ni	NiO • Al ₂ O ₃	v	V_2O_5
F	Na ₃ AlF ₆	О	O₂(空气)	w	CaWO ₄
Fe	Fe ₂ O ₃	Os	OsO ₄	Y	Y_2O_3
Ga	Ga ₂ O ₃	P	Ca ₃ (PO ₄) ₂	Yb	Yb ₂ O ₃
Gd	GdF₃	Pb	PbCl ₄	Zn	ZnSiO ₃
Ge	GeO ₂	Pd	Pd	Zr	ZrSiO ₄

3.2 烟值的计算方法

见附录 A。

4 㶲平衡

4.1 㶲损失

畑损失按式(1)计算

式中:

I—— 拥 损 失 , 单 位 为 焦 耳 (J);

 I_{int} —— 内部㶲损失,单位为焦耳(J); I... 外部㶲损失,单位为焦耳(J)。 4.2 体系输入与输出之间的㶲平衡 体系输入与输出之间的㶲平衡按式(2)计算 $E_{ ext{in}} = E_{ ext{out}} + I_{ ext{int}} + \Delta E_{ ext{sys}}$ 式中: E_{in} 一 穿过体系边界的输入烟,单位为焦耳(J); E_{out} —— 穿过体系边界的输出烟,单位为焦耳(J); ΔE_{sys} —— 拥在体系内部的积存量,单位为焦耳(J)。对于稳定流动体系,输入与输出之间的㶲平衡按式(3)计算 $E_{\rm in} = E_{\rm out} + I_{\rm int}$ 4.3 体系支付与收益之间的㶲平衡 体系支付与收益之间的㶲平衡按式(4)计算 $E_{\rm p}=E_{\rm g}+I$ 式中: E_0 ——体系在能量转变过程中的支付烟,单位为焦耳(J); E_s ——体系在能量转变过程中的收益㶲,单位为焦耳(J)。 5 烟分析的评价指标 5.1 普遍㶲效率 普遍㶲效率按式(5)计算 $\eta_{
m gen} = rac{E_{
m out}}{E_{
m in}} = 1 - rac{I_{
m int}}{E_{
m in}}$ 式中: η_{gen}—普遍㶲效率。 5.2 目的㶲效率 目的㶲效率按式(6)计算 $\eta_{\text{obj}} = \frac{E_{\text{g}}}{E_{\text{o}}} = 1 - \frac{I}{E_{\text{o}}}$ 式中: η_{оы}——目的㶲效率。 5.3 局部㶲损失率 局部㶲损失率按式(7)计算 $\xi_i = \frac{I_i}{I}$ 式中: ξ ——体系的局部㶲损失率; 5.4 局部㶲损失系数 局部㶲损失系数按式(8)计算 $\Omega_i = \frac{I_i}{E_n}$ 式中:

 Ω ——体系的局部㶲损失系数。

GB/T 14909-2005

体系的局部㶲损失系数与体系的目的㶲效率之间关系如式(9)

5.5 单位产品(或单位原料)的支付㶲

单位产品(或单位原料)的支付㶲按式(10)计算

$$\omega = \frac{E_{\rm p}}{M} \qquad \qquad \cdots$$

式中:

ω——单位产品(或单位原料)的支付烟,单位为焦耳每千克($J \cdot kg^{-1}$);

M——总产量(或总原料量),单位为千克(kg)。

6 烟分析的步骤

6.1 确定体系

事先要明确体系的边界、子体系的分割方式,以及穿过边界的所有物质和能量(例如功或热)。必要时辅以示意图说明。

6.2 明确环境基准

一般应采用本标准的环境参考态。若采用其他基准态应予以说明。

6.3 说明计算依据

说明所使用的热力学基础数据(如物质的热容、焓和熵等)的来源。列出直接应用本标准的计算公式或由本标准定义外延得到的数学关系式,并说明应用的场合。

6.4 计算㶲平衡

建立体系的㶲平衡关系,用表和图辅助表示计算结果。基于㶲平衡关系,做出支付与收益、损失平衡表或做出输入与输出、损失平衡表。计算出㶲效率、局部㶲损失率或局部㶲损失系数,以及单位产品(或单位原料)的支付㶲等评价指标。

6.5 评价与分析

根据计算结果,分析㶲损失的部位、大小和原因,为改善过程的能量利用指出方向和措施。

6.6 佣分析方法的计算实例

参见附录 B。

附 录 A (规范性附录) 佣值的计算方法

本附录是烟分析方法中涉及的基本计算问题的说明。文中所使用的物理量及符号如表 A.1 所示。 表 A.1 物理量的名称、符号及单位

量的符号	量的名称	单 位
\hat{a}_i	多组分物质中 i 组分的活度	
a,b,c	化合物 A。B。C。中的相应元素的化学计量数	
Cp	质量定压热容	J • kg ⁻¹ • K ⁻¹
$C_{p,m}$	摩尔定压热容	∫ • mol ⁻¹ • K ⁻¹
<i>C</i> ,	体积定压热容	J • m ⁻³ • K ⁻¹
E	畑	J
e	比㶲	J • kg⁻¹
E_{m}	摩尔㶲	J • mol ^{−1}
$\Delta E_{ m sys}$	畑在体系内部的积存	J
$\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\mathrm{\theta}}$	标准摩尔生成吉布斯自由能	J • mol⁻¹
Н	焓	J
h	质量焓	J⋅kg ⁻¹
$H_{\mathfrak{m}}$	摩尔焓	J • mol⁻¹
Δh_{H}	髙热值(高发热量)	J⋅kg ⁻¹
$\Delta h_{ m L}$	低热值(低发热量)	J • kg ⁻¹
$\Delta_{ ext{mix}} H_{ ext{m}}$	混合热	J • mol ⁻¹
I	畑損失	J
М	产量或原料量	kg
Þ	压力	Pa
Q	热量	J
R	通用气体常数为 8.3145	J • mol-1 • K-1
S	熵	J • K-1
s	质量熵	$J \cdot kg^{-1} \cdot K^{-1}$
S_{m}	摩尔熵	J • mol ⁻¹ • K ⁻¹
T	热力学温度	К
U	热力学能又名内能	J
V	体积	m ³
υ	比体积或比容	m³ • kg ⁻¹
$V_{\mathfrak{m}}$	摩尔体积	m³ • mol⁻¹
W	功	J
w_i	混合物中 i 组分的质量分数	
x_i	混合物中 i 组分的摩尔分数	
		· · · · · · · · · · · · · · · · · · ·

GB/T 14909-2005

表 A.1(续)

量的符号	量的名称	单 位
Ę,	体系的局部拥损失率	
η	效率	
ω	单位产品(或单位原料)的支付㶲	J•kg⁻¹
Ω_i	体系的局部拥损失系数	
上标:		
θ	标准状态	
id	理想混合物	
ig	理想气体	
1	液体	
下标:		
0	环境基准态	
1,2,	某种状态	
comb	燃烧	
ext	外部	
exh	排烟	
f	燃料	
g	收益,气体	
gen	普遍	
h	高温	
hex	换热	
i	混合物中某个组分或局部体系	
in	输入	
int	内部	
L	损失	
mix	混合	
obj	目的	
out	输出	
р	支付	
q	热量	
s	饱和状态	
st	水蒸气	- And a
sys	体系	
w	水	
顶标:		
•	单位时间的物理量	
底标:		
_	一维数组	

A.1 功和热的㶲

E = W (A.1)

式中:

E——㶲,单位为焦耳(J);

W——功、电能或机械能等,单位为焦耳(J)。

传热过程中热的㶲为:

$$E_{q} = \int_{Q} \left(1 - \frac{T_{0}}{T}\right) \delta Q \qquad \qquad \cdots \qquad (A.2)$$

式中:

 T_0 — 环境基准态的温度,单位为开尔文(K);

T——体系的温度,单位为开尔文(K);

Q---过程中传输的热,单位为焦耳(J)。

A.2 稳定流动体系与封闭体系的㶲

在不计动能与位能时,处于一定状态下稳定物质流的烟为:

式中:

H-----一定状态下体系的焓,单位为焦耳(J);

S——一定状态下体系的熵,单位为焦耳每开尔文($J \cdot K^{-1}$);

H。——环境基准态下体系的焓,单位为焦耳(J);

 S_0 ——环境基准态下体系的熵,单位为焦耳每开尔文(J·K⁻¹)。

从状态 1 变化到状态 2 稳定流动体系的㶲变化为:

式中:

 E_1 ——状态 1 下体系的烟,单位为焦耳(J);

 E_2 ——状态 2 下体系的 \mathfrak{m} ,单位为焦耳(J)。

处于一定状态下封闭体系的㶲为:

$$E = (U - T_0 S + p^{\theta} V) - (U_0 - T_0 S_0 + p^{\theta} V_0) \qquad \cdots \qquad (A.5)$$

式中:

ρ^θ----环境基准态下体系的压力,单位为帕斯卡(Pa);

 V_0 ——环境基准态下体系的体积,单位为立方米 (m^3) ;

 U_0 ——环境基准态下体系的热力学能,单位为焦耳(J);

V——一定状态下体系的体积,单位为立方米(m³)。

从状态 1 变化到状态 2 封闭体系的㶲变化为:

$$E_2 - E_1 = (U_2 - T_0 S_2 + p^{\theta} V_2) - (U_1 - T_0 S_1 + p^{\theta} V_1) \quad \cdots \quad (A.6)$$

式中:

 U_1 — 状态 1 下体系的热力学能,单位为焦耳(J);

 U_2 ——状态 2 下体系的热力学能,单位为焦耳(J);

 V_1 ——状态 1 下体系的体积,单位为立方米(m^3);

 V_2 ——状态 2 下体系的体积,单位为立方米(m^3);

 S_1 ——状态 1 下体系的熵,单位为焦耳每开尔文(J·K⁻¹);

GB/T 14909-2005

 S_2 ——状态 2 下体系的熵,单位为焦耳每开尔文(J·K⁻¹)。

A.3 㶲损失

体系的内部㶲损失可通过正文中式(3)的㶲平衡关系导出。根据能量转换过程目的所考察的外部 㶲损失则是式(3)中输出㶲 E_{out} 的一部分。表 A. 2 列出了五种基本过程的㶲损失的计算方法,每种过程 又举例说明了几种具有不同特征的情况。其中,均忽略了过程的动能、位能变化以及由于保温不良造成的热损失。

表 A.2 五种基本过程的㶲损失的计算方法

过 程		① 流动立	 İ 程		
特征或目的	输出功	输入功	J	节流	
实际过程或设备	汽(气)轮机、内燃机	压缩机、泵、	、风机	节流阀	
图示	图示 W H_1 , E_1 H_2 , E_2 W		H_1 , E_1 H_2 , E_2		
能量平衡	$H_1 = H_2 + W$	$H_1 + W =$: H ₂	$H_1 = H_2$	
畑平衡	$E_1 = E_2 + W + I_{ ext{int}}$ $E_{ ext{in}} = E_1$ $E_{ ext{out}} = E_2 + W$	$E_1 + W = E_2 + I_{\mathrm{int}}$ $E_{\mathrm{in}} = E_1 + W$ $E_{\mathrm{out}} = E_2$		$E_1 = E_2 + I_{ m int}$ $E_{ m in} = E_1$ $E_{ m out} = E_2$	
内部㶲损失	$I_{\rm int} = E_1 - E_2 - W$	$I_{\rm int} = E_1 + W - E_2$		$I_{\rm int} = E_1 - E_2$	
烟效率	$\frac{W}{E_1-E_2}$	$\frac{E_2-E_2}{W}$	1	$rac{E_2}{E_1}$	
过 程		② 传热过	上程		
特征或目的	放热		吸热		
实际过程或设备	输出热的过程			输人热的过程	
图示	Q, E_{4} H_{1}, E_{1} H_{2}	, E ₂	$\overline{H_1}$	Q, E_q	
能量平衡	$H_1 = H_2 + Q$			$H_1 + Q = H_2$	
畑平衡	$E_1 = E_2 + E_{\mathrm{q}} + I_{\mathrm{in}}$ $E_{\mathrm{in}} = E_1$ $E_{\mathrm{out}} = E_2 + E_{\mathrm{q}}$	nt	$E_1+E_{ m q}\!=\!E_2+I_{ m int}$ $E_{ m in}\!=\!E_1+E_{ m q}$ $E_{ m out}\!=\!E_2$		
内部㶲损失	$I_{\rm int} = E_1 - E_2 - E$			$I_{\rm int} = E_1 + E_{\rm q} - E_2$	
畑效率	$rac{E_{ m q}}{E_1-E_2}$			$rac{E_2-E_1}{E_{ m q}}$	

表 A.2(续)

过 程		③ 化学			
特征或目的	绝热反应	放热反应	吸热反应	电 解	
实际过程或设备	绝热反应器	有冷却的反应器	有加热的反应器	电解槽	
图示	H_1 , E_1 H_2 , E_2	Q, E_q H_1, E_1 H_2, E_2	H_1 , E_1 H_2 , E_2 Q , E_q	H_1 , E_1 H_2 , E_2	
能量平衡	$H_1 = H_2$	$H_1 = H_2 + Q$	$H_1 + Q = H_2$	$H_1+W=H_2$	
畑平衡	$E_1 = E_2 + I_{ ext{int}}$ $E_{ ext{in}} = E_1$ $E_{ ext{out}} = E_2$	$E_1 = E_2 + E_{ m q} + I_{ m int}$ $E_{ m in} = E_1$ $E_{ m out} = E_2 + E_{ m q}$	$E_1+E_{ m q}=E_2+I_{ m int}$ $E_{ m in}=E_1+E_{ m q}$ $E_{ m out}=E_2$	$E_1 + W = E_2 + I_{ m int}$ $E_{ m in} = E_1 + W$ $E_{ m out} = E_2$	
内部㶲损失	$I_{\rm int} = E_1 - E_2$	$I_{\rm int} = E_1 - E_2 - E_{\rm q}$	$I_{\rm int} = E_1 + E_{\rm q} - E_2$	$I_{\rm int} = E_1 + W - E_2$	
州效率	$rac{E_2}{E_1}$	$\frac{E_{\rm q}}{E_{\rm 1}-E_{\rm 2}}$	$rac{E_2-E_1}{E_{ m q}}$	$\frac{E_2-E_1}{W}$	
过 程	④ 混	合过程	⑤ 分离过程		
特征或目的	绝热混合	放热混合	输人热的分离	输入功的分离	
实际过程或设备	绝热混合器	有冷却的混合器	蒸馏釜	微分过滤、反渗透	
图示	H_1 , E_1 H_2 , E_2 H_3 , E_3	$ \begin{array}{c} H_1, E_1 \\ \hline H_2, E_2 \end{array} $ $ \begin{array}{c} Q, E_4 \\ \hline H_3, E_3 \end{array} $	H_1, E_1 H_2, E_2 H_3, E_3 Q, E_4	H_1, E_1 H_2, E_2 H_3, E_3	
能量平衡	$H_1 + H_2 = H_3$	$H_1+H_2=H_3+Q$	$H_1 + Q = H_2 + H_3$	$H_1+W=H_2+H_3$	
		$E_1 + E_2 = E_3 + E_q + I_{int}$ $E_{in} = E_1 + E_2$ $E_{out} = E_3 + E_q$	$E_1 + E_q = E_2 + E_3 + I_{int}$ $E_{in} = E_1 + E_q$ $E_{out} = E_2 + E_3$	$E_1 + W = E_2 + E_3 + I_{\mathrm{int}}$ $E_{\mathrm{in}} = E_1 + W$ $E_{\mathrm{out}} = E_2 + E_3$	
内部㶲损失	$I_{\rm int} = E_1 + E_2 - E_3$	$I_{\text{int}} = E_1 + E_2 - E_3 - E_q$	$I_{\rm int} = E_1 + E_{\rm q} - E_2 - E_3$	$I_{\text{int}} = E_1 + W - E_2 - E_3$	
畑效率	$\frac{E_3}{E_1 + E_2}$	$\frac{E_{\scriptscriptstyle \rm q}+E_{\scriptscriptstyle 3}}{E_{\scriptscriptstyle 1}+E_{\scriptscriptstyle 2}}$	$\frac{(E_2+E_3)-E_1}{E_q}$	$\frac{(E_2+E_3)-E_1}{W}$	

A.4 物质的㶲

A.4.1 物质的标准㶲

处于环境基准态温度和基准态压力下纯物质的烟称为该物质的标准烟,记作 E^0 。该值通常取摩尔量。

A. 4. 1. 1 化学元素的标准㶲

化学元素的标准㶲见表 A.3。

GB/T 14909-2005

表 A.3 元素的标准㶲

元素	标准㶲 kJ•mol ⁻¹	元素	标准㶲 kJ•mol ⁻¹	元素	标准㶲 kJ·mol ⁻¹
Ag(s)	86. 570	Н	117. 575	Pr	978.061
Al	788. 186	He	30. 224	Pt	0
Ar	11. 665	Hf	1057. 105	Rb	354.722
As	386. 137	Но	967. 432	Rh	0
Au	0	Hg	134. 692	Ru	0
В	609.882	I	35. 491	S	601.063
Ba	784.076	In	412. 372	Sb	420. 522
Be	594. 277	Ir	0	Sc	906.734
Bi	308. 083	K	388. 426	Se	167.570
Br	25. 842	Kr	0	Si	850. 529
С	410.515	La	989. 334	Sm	879.773
Ca	713. 882	Li	374.690	Sn	516.023
Ce	1021. 448	Lu	891, 464	Sr	740. 743
Cd	297. 471	Mg	616, 793	Ta	950. 578
Cl	23, 222	Мо	713. 730	Tb	909. 227
Со	240. 261	Mn	463. 235	Te	265. 629
Cr	523. 590	N	0.346	Th	1164.813
Cs	399.656	Na	360. 802	Ti	885. 498
Cu	126. 350	Nb	877. 954	Tl	171. 925
Dy	957. 970	Nd	969.027	Tm	894. 284
Er	961. 983	Ne	27. 139	U	1152.058
Eu	873. 616	Ni	218. 435	v	704.556
F	211. 481	О	1. 977	w	795. 441
Fe	367.761	Os	294. 557	Y	905. 356
Ga	496. 228	P	863. 689	Yb	860. 434
Gd	987. 942	Pb	421.961	Zn	323. 059
Ge	499.780	Pd	0	Zr	1062.802

A. 4. 1. 2 化合物的标准㶲

a) 化合物的标准㶲

化合物 $(A_a B_b C_c)$ 的标准烟为:

 $E_{\mathfrak{m}}^{\theta}(A_{a}B_{b}C_{c}) = \Delta_{f}G_{\mathfrak{m}}^{\theta}(A_{a}B_{b}C_{c}) + aE_{\mathfrak{m}}^{\theta}(A) + bE_{\mathfrak{m}}^{\theta}(B) + cE_{\mathfrak{m}}^{\theta}(C) \qquad \cdots (A.7)$

式中:

 $\Delta_i G_m^{\theta}(A_a B_b C_c)$ — 化合物 $A_a B_b C_c$ 的标准摩尔生成吉布斯自由能,单位为千焦耳每摩尔 $(kJ \cdot mol^{-1});$

a——A 元素的化学计量数;

b---B元素的化学计量数;

c——C 元素的化学计量数;

 $E_m^{\theta}(A)$ ——A 元素的标准㶲,单位为千焦耳每摩尔(kJ·mol⁻¹);

 $E_m^{\theta}(B)$ ——B元素的标准畑,单位为千焦耳每摩尔(kJ·mol⁻¹);

 $E_m^{\theta}(C)$ ——C 元素的标准㶲,单位为千焦耳每摩尔(kJ·mol $^{-1}$)。

由此计算,表 A. 4 列出了部分常见无机化合物的标准烟数值,表 A. 5 列出了部分常见有机化合物的标准烟数值。同时,表 A. 4 和表 A. 5 还列出了作为计算基础的该化合物的标准摩尔生成吉布斯自由能数值。

表 A. 4 部分无机化合物的标准烟数值

AC TO THE POST OF										
化合物	₩ Æ +	$\Delta_{\mathrm{f}}G_{\mathrm{m}}^{ heta}$	标准㶲	化合物	聚集态	$\Delta_{f}G_{m}^{ heta}$	标准㶲			
14C in 160	聚集态	kJ • mol⁻¹	kJ • mol⁻¹	K 10 10	來朱心	kJ • mol ⁻¹	kJ • mol⁻¹			
AlCl ₃	S	-629.974	227. 878	KI	s	-322.895	101.022			
$Al_2(SO_4)_3$	s	-3 099,657	303. 634	MgO	s	-568.895	49.875			
BaO	s	-520.387	265. 666	MgCl ₂	s	-594.618	68, 620			
BaCl ₂	s	-810.330	20. 190	MgCO ₃	s	-1012.214	21.027			
BaSO ₄	s	-1362.109	30, 939	Mg(OH) ₂	s	-833.675	22. 223			
BaCO ₃	s	-1119.263	81. 260	MgSO ₄	s	-1147.430	78. 336			
CaO	s	-603.511	112. 349	Mn ₂ O ₃	s	-881.138	51. 264			
Ca(OH) ₂	s	-898.444	54.543	Mn ₃ O ₄	s	-1281.211	116.404			
CaCl ₂	s	-748.799	11. 527	N ₂	g	0	0.693			
СО	g	−137.170	275, 323	NaOH	s	-379,776	100.578			
CO_2	g	-394.394	20.075	NaBr	s	-349.025	37.619			
Cu ₂ O	s	-147.877	106. 801	Na ₂ SO ₄	s	-1270.001	60.576			
CuSO ₄ • H ₂ O	s	-918.016	54. 434	Na ₂ CO ₃	s	1048, 227	89. 824			
FeAl ₂ O ₄	s	-1853.877	98. 165	NaHCO ₃	s	-838.298	56. 526			
Fe(OH) ₃	s	-705.469	20. 948	NiSO ₄	s	-762.616	64. 792			
Fe ₂ SiO ₄	s	-1376.206	217. 754	NH ₃	g	-16.368	336.703			
H ₂	g	0	235. 150	NO	g	86. 588	88. 912			
HBr	g	-53.469	89. 948	NO ₂	g	51, 257	55. 559			
HCl	g	-95, 282	45.515	O_2	g	0	3, 955			
HF	g	-274.702	54. 354	PbO	s	-189.633	234. 305			
HgO	s	-58.555	78. 114	PbO ₂	s	-224.541	201. 374			
HgCl ₂	s	−181.136	114. 189	PbCl ₂	s	-314.111	154. 294			
HgSO ₄	s	-594, 799	148. 865	PbBr ₂	s	-260.882	212.763			
HI	g	1.594	154.660	PbSO ₄	s	-813.013	217. 921			
H ₂ O	g	-228.547	8. 580	PbCO ₃	s	-625.412	212, 996			
H ₃ PO ₄	l	-1123.654	100. 670	SO ₂	g	-300.080	304.939			
H ₂ S	g	-33.320	802. 893	SO ₃	g	-371.068	235.927			
H ₂ SO ₄	1	-689.940	154. 183	SnO	s	-257.114	260.886			
KBr	s	-380, 213	34. 055	ZnO	s	-320.491	4.545			
KCl	s	-408.578	3. 070	ZnCl ₂	s	-369.394	0.110			
K ₂ CO ₃	s	-1065.356	127. 943	ZnSO ₄	s	-868.741	63. 291			
KCN	s	-102.051	697. 237							

GB/T 14909-2005

表 A.5 部分有机化合物的标准烟数值

化合物	聚集态	$\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\theta}$ kJ • mol ⁻¹	标准㶲 kJ·mol ⁻¹	化合物	聚集态	$\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\mathrm{g}}$ k $\mathrm{J}ullet$ mol $^{-1}$	标准㶲 kJ•mol ⁻¹
CH₄	g	-50.84 0	829.974	HCOOCH ₃	g	-297.190	998. 094
C ₂ H ₆	g	-32.930	1493. 549	CH₃COOC₂H₄	l	-332.700	2253.914
C ₃ H ₈	g	-23.470	2148. 674	(CH ₃) ₂ O	g	-112.930	1415, 526
C ₄ H ₁₀	g	-17 . 150	2800.658	(C ₂ H ₄) ₂ O	g	-51 .83 0	2532, 806
C ₅ H ₁₂	g	-8.370	3455, 103	нсно	g	-109,910	537. 732
C ₆ H ₁₄	g	-0.250	4108.888	СН₃СНО	g	-133.300	1160.007
C ₆ H ₁₄	1	-3.8 00	4105, 338	(CH ₃) ₂ CO	g	-153.050	1785. 921
C ₇ H ₁₆	g	7.990	4762. 792	CH₃ Cl	g	-62.890	723. 572
C ₂ H ₄	g	68. 120	1359. 449	CH ₂ Cl ₂	g	-68.870	623. 239
C ₃ H ₆	g	62. 720	1999. 714	CHCl₃	ı	-73.700	524. 056
$CH_2 = CHC_2 H_5$	g	71.300	2653.959	CCl ₄	l	-62.600	440.803
C ₂ H ₂	g	209. 200	1265. 380	CH ₃ Br	g	-28.160	760. 922
C ₅ H ₁₀ (环戊烷)	1	36.400	3264. 723	CH ₃ I	g	15.650	814.380
C ₆ H ₁₂ (环已烷)	1	26.700	3900.688	CF ₄	g	-888.430	368.011
C ₆ H ₆	1	124.500	3293. 039	C ₆ H ₅ F	g	-69.040	3193. 406
CH ₃ C ₆ H ₅	1	113, 800	3928.004	C ₆ H ₅ Cl	1	89.200	3163. 386
CH₃OH	1	-166.600	716. 192	C ₆ H ₅ Br	1	126.000	3202.807
C ₂ H ₅ OH	1	-174,800	1353. 656	C ₆ H ₅ I	g	187. 78	3274. 235
C₃ H₁ OH	1	-170.600	2003. 521	CH ₃ NH ₂	g	32. 260	1030, 996
C ₄ H ₉ OH	l	-162.500	2657. 286	CH ₃ CN	1	86.500	1260.601
C ₅ H ₁₁ OH	g	-149.750	3315.702	CO(NH ₂) ₂	s	-196.800	686.685
C ₆ H ₅ OH	g	-32.890	3137.627	C ₆ H ₅ NO ₂	1	146. 200	3201.466
НСООН	1	-361.400	288. 219	C ₆ H ₅ NH ₂	1	149. 200	3435.661
CH₃ COOH	1	-389.900	905. 384	C ₆ H ₁₂ O ₆ (α-葡萄糖)	s	-910.400	2975. 452
C ₃ H ₇ COOH	1	-377.700	2208. 914	C ₁₂ H ₂₂ O ₁₁ (蔗糖)	s	-1544.700	5989, 878
C ₁₅ H ₃₁ COOH	s	-274	10060.594	C ₅ H ₅ N	l	190. 21	2831.010
C ₆ H ₅ COOH	s	-210.41	3372, 599	C ₉ H ₇ N	1	293, 5	4811.506

b) 燃料标准㶲的估算

气体燃料的比标准㶲为:

式中:

 e^{θ} ——燃料的比标准㶲,单位为千焦耳每千克($kJ \cdot kg^{-1}$);

 $\Delta h_{\rm H}^{\rm H}$ — 燃料的标准高热值,单位为千焦耳每千克(kJ·kg $^{-1}$)。

液体燃料的比标准烟为:

 $e^{\theta} \approx 0.975 \times \Delta h_{\mathrm{H}}^{\theta}$ (A.9)

固体燃料的比标准㶲为:

式中:

 Δh_L^0 ——燃料的标准低热值,单位为千焦耳每千克(kJ·kg⁻¹);

2 438----水的汽化潜热,单位为千焦耳每千克(kJ·kg⁻¹);

w——固体燃料中水的质量分数(%)。

A. 4.2 稳定流动体系纯物质的㶲

可利用式(A.3)求取稳定流动体系纯物质的㶲。例如,对于任意温度 T 和压力 p 下某种纯物质的摩尔㶲为:

$$E_{\mathbf{m}}(T,p) = E_{\mathbf{m}}^{\theta} + \left[H_{\mathbf{m}}(T,p) - H_{\mathbf{m}}^{\theta}(T_{0},p^{\theta})\right] - T_{0}\left[S_{\mathbf{m}}(T,p) - S_{\mathbf{m}}^{\theta}(T_{0},p^{\theta})\right] \cdots (A.11)$$

式中:

 E_m^0 ——纯物质的标准㶲,单位为千焦耳每摩尔(kJ·mol⁻¹);

 $S_m^{\theta}(T_0, p^{\theta})$ — 环境基准态温度 T_0 与基准态压力 p^{θ} 下纯物质的摩尔熵,单位为千焦耳每摩尔开尔文 $(kJ \cdot mol^{-1} \cdot K^{-1});$

 $S_{m}(T,p)$ ——任意温度 T 和压力 p 下纯物质的摩尔熵,单位为千焦耳每摩尔开尔文(kJ·mol⁻¹·K⁻¹); $H_{m}^{\theta}(T_{o},p^{\theta})$ ——环境基准态温度 T_{o} 与基准态压力 p^{θ} 下纯物质的摩尔焓,单位为千焦耳每摩尔(kJ·mol⁻¹);

 $H_{m}(T,p)$ ——任意温度 T 和压力 p 下纯物质的摩尔焓,单位为千焦耳每摩尔(kJ·mol⁻¹)。 式(A. 11)中的焓与熵可以借助热力学性质模型计算,也可以从适宜的热力学性质图或表查取。

任意温度 T 和压力 p 下某种理想气体的摩尔㶲为:

$$E_{\rm m}^{\rm ig}(T, p) = E_{\rm m}^{\rm 0} + \int_{T_0}^{T} \left(1 - \frac{T_0}{T}\right) C_{p, \rm m}^{\rm ig} dT + RT_0 \ln\left(\frac{p}{p^{\rm 0}}\right) \qquad \cdots \cdots (A. 12)$$

式中:

 E_m^q ——纯物质的标准烟,环境基准态下该物质为气态,单位为千焦耳每摩尔(kJ· mol^{-1});

 $C_{n,m}^{\text{ig}}$ ——理想气体的摩尔定压热容,单位为千焦耳每摩尔开尔文(kJ·mol⁻¹·K⁻¹);

R——气体常数,为 8.314 5×10^{-3} kJ·mol⁻¹·K⁻¹。

任意温度 T 和压力 p 下某种纯液体的摩尔㶲为:

$$E_{\rm m}(T,p) = E_{\rm m}^{\theta} + \int_{T_0}^{T} \left(1 - \frac{T_0}{T}\right) C_{p,m}^{1} dT$$
 (A. 13)

士山.

 E_m^0 一纯物质的标准烟,环境基准态下该物质为液态,单位为千焦耳每摩尔(kJ·mol $^{-1}$);

 $C_{\text{o.m}}$ ——液体的摩尔定压热容,单位为千焦耳每摩尔开尔文(kJ·mol⁻¹·K⁻¹)。

A. 4. 3 稳定流动体系多组分物质的㶲

对于任意温度为 T,压力为 p 和一定组成的多组分稳定流动体系,其摩尔畑为:

$$E_{m}(T,p,\underline{x}) = \sum x_{i}E_{m,i}(T,p) + RT_{0}\sum x_{i}\ln\hat{a}_{i} + \left(1 - \frac{T_{0}}{T}\right)\Delta_{mix}H_{m} \qquad \cdots (A.14)$$

式中:

 x_i ——体系中 i 组分的摩尔分数;

 $E_{m,i}(T,p)$ ——体系温度 T 与压力 p 下组分 i 的摩尔畑,单位为千焦耳每摩尔(kJ·mol $^{-1}$),可利用式 (A. 11)算出;

 \hat{a}_i ——体系中i组分的活度,可以借助热力学性质模型计算等方法获取;

 $\Delta_{\min} H_{\mathrm{m}}$ ——体系的混合热,可以借助热力学性质模型计算等方法获取,单位为千焦耳每摩尔(kJ·mol⁻¹)。

GB/T 14909-2005

理想混合物的摩尔㶲为:

$$E_{\mathrm{m}}^{\mathrm{id}}(T, p, \underline{x}) = \sum x_{i} E_{\mathrm{m}, i}(T, p) + RT_{0} \sum x_{i} \ln \hat{x}_{i} \qquad \cdots \cdots (A. 15)$$

式中:

 $E_{m,i}(T,p)$ ——体系温度 T 与压力 p 下液体组分 i 的摩尔畑,单位为千焦耳每摩尔(kJ·mol⁻¹),可利用式(A. 13)算出。

理想气体混合物的摩尔㶲为:

$$E_{\mathrm{m}}^{\mathrm{id}}(T,p,\underline{x}) = \sum x_{i} E_{\mathrm{m},i}^{\mathrm{ig}}(T,p) + RT_{0} \sum x_{i} \ln \left(\frac{p_{i}}{p}\right) \qquad \cdots \cdots (A.16)$$

式中:

 $E_{m,i}^{i}(T,p)$ ——体系温度 T 与压力 p 下理想气体组分 i 的摩尔畑,单位为千焦耳每摩尔(kJ·mol⁻¹),可利用式(A. 12)算出;

 p_i ——混合物中的i组分的分压,单位为帕斯卡(Pa)。

附 录 B (资料性附录) 畑分析方法的计算实例

本附录是㶲分析方法的基本计算实例的说明。

B.1 锅炉的烟分析

B.1.1 锅炉概况和原始数据

燃煤蒸汽锅炉图 B. 1 的蒸发量 M_w 为 410×10^3 kg • h⁻¹;蒸汽参数是:压力 p 为 9. 81 MPa,温度 T 为 813. 15 K(540 $\mathbb C$);给水温度 T_w 为 493. 15 K(220 $\mathbb C$);燃煤量 M_i 为 44. 5×10^3 kg • h⁻¹;煤中水的质量分数 w 为 5. 54%;煤的低热值 $\Delta h_{\mathbb C}^0$ 为 25 523 kJ • kg⁻¹;炉膛内的最高温度 T_h 为 1 873. 15 K (1 600 $\mathbb C$);每千克燃料的排烟量 V_g 为 9. 975 m³;排烟温度 T_g 为 405. 15 K(132 $\mathbb C$);排烟气体积定压热容 C_p 取为常量,其值为 1. 387 3 kJ • m⁻³ • K⁻¹。此外可将燃料的不完全燃烧和排渣、散热等损失 $q_{\mathbb C}$ 折合为燃煤发热量的 2. 74%;本例所取体系为锅炉炉墙外侧,包括烟风道直至烟囱出口。

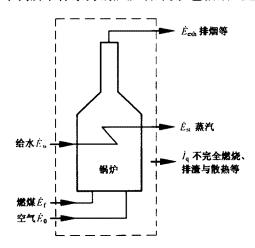


图 B.1 燃煤蒸汽锅炉示意图

B. 1.2 环境基准的说明

本例未采用本标准的环境基准态温度,而是根据所在地区的情况设环境物理基准态温度 T_0 为 293. 15 K(20 $^{\circ}$),因而空气进入锅炉时的㶲 E_0 应取为零。

B. 1.3 计算依据的说明

本例计算所用物性数据除已知条件中给定者外,水蒸气性质选自 Grigull U 等编著的《Steam Tables in SI-Units》(Grigull U, Straub J, and Schiebener P, 3rd ed. Berlin: Springer-Verlag, 1990)。

B. 1.4 锅炉的㶲平衡和㶲效率

B. 1. 4. 1 各物流的㶲的计算

根据本标准的式(A.10),由已知煤的热值数据可估算出其比标准佣为:

$$e_{\rm f}^{\theta} = \Delta h_{\rm L}^{\theta} + 2438w = 25523 + 2438 \times 0.0554 = 25.658 \,({\rm MJ/kg})$$

则锅炉输入燃料的化学烟为:

$$\dot{E}_f = e_f^{\theta} \cdot \dot{M}_f = 25.658 \times 44.5 \times 10^3 = 1141.781 \text{ (GJ/h)}$$

不计排烟与环境的化学成分不平衡,仅考虑其热不平衡且视排烟为纯物质,因为 $p=p_0$, $e^0=0$,所以排烟的㶲损失可按式(A. 12)计算:

$$\begin{split} \dot{I}_{\text{exh}} &= \dot{E}_{\text{exh}} \\ &= \dot{M}_{\text{f}} V_{\text{g}} \int_{T_0}^{T_{\text{g}}} C_{\text{p}} \left(1 - \frac{T_0}{T} \right) dT \\ &= \dot{M}_{\text{f}} V_{\text{g}} C_{\text{p}} \left[(T_{\text{g}} - T_0) - T_0 \ln \left(\frac{T_{\text{g}}}{T_0} \right) \right] \\ &= 44.5 \times 10^3 \times 9.975 \times 1.3873 \times \left[(405.15 - 293.15) - 293.15 \ln \left(\frac{405.15}{293.15} \right) \right] \\ &= 10.558 (\text{GJ} \cdot \text{h}^{-1}) \end{split}$$

设炉膛内燃烧产物,即烟气的最高温度为 T=1 600+273.15=1 873.15 K,其烟为:

$$\begin{split} \dot{E}_{T_{h}} &= \dot{M}_{f} V_{g} \int_{T_{0}}^{T_{h}} C_{p} \left(1 - \frac{T_{0}}{T} \right) dT \\ &= \dot{M}_{f} V_{g} C_{p} \left[(T_{h} - T_{0}) - T_{0} \ln \left(\frac{T_{h}}{T_{0}} \right) \right] \\ &= 44.5 \times 10^{3} \times 9.975 \times 1.3873 \times \left[(1873.15 - 293.15) - 293.15 \ln \left(\frac{1873.15}{293.15} \right) \right] \\ &= 638.175 (GJ \cdot h^{-1}) \end{split}$$

基于工程分析所要求的精度,进入锅炉燃料的物理烟与排渣的物理烟可不予考虑。由水蒸气表查取的数据得到给水的焓为:

$$\dot{H}_{\rm w} = \dot{M}_{\rm w}(h_{\rm w} - h_0) = 410 \times 10^3 \times (943.37 - 83.83) = 352.411 \, ({\rm GJ/h})$$

根据式(A.3)给水的㶲为:

$$\dot{E}_{w} = \dot{M}_{w} [(h_{w} - h_{0}) - T_{0}(s_{w} - s_{0})]$$

$$= 410 \times 10^{3} \times [(943.37 - 83.83) - 293.15 \times (2.5172 - 0.2963)] = 85.478 \text{ (GJ/h)}$$

仿此,水蒸气在锅炉出口的焓和㶲分别为:

$$\dot{H}_{st} = \dot{M}_{w}(h - h_{0}) = 410 \times 10^{3} \times (3 \ 476. \ 1 - 83. \ 83) = 1 \ 390. \ 831 \ (GJ \cdot h^{-1})$$

$$\dot{E}_{st} = \dot{M}_{w}[(h - h_{0}) - T_{0}(s - s_{0})]$$

$$= 410 \times 10^{3} \times [(3 \ 476. \ 1 - 83. \ 83) - 293. \ 15 \times (6. \ 734 \ 7 - 0. \ 296 \ 3)]$$

$$= 616. \ 990 \ (GJ \cdot h^{-1})$$

锅炉的不完全燃烧和向环境的散热所造成的㶲损失 I_a,是外部㶲损失的一部分,它可由相应的燃料损失求得:

$$\dot{I}_{a} = \dot{Q}_{I} = \dot{M}_{f} \cdot \Delta h_{L}^{\theta} \cdot \dot{q}_{L} = 44.5 \times 10^{3} \times 25523 \times 0.0274 = 31.120 \text{ (GJ} \cdot \text{h}^{-1})$$

B.1.4.2 输入与输出的㶲平衡

按进入烟的总和减去离开烟的总和的方式列出的平衡关系可求出内部烟损失 I_{int}。内部烟损失是无形的,往往不易察觉,而在不少热工设备中,内部烟损失又往往构成烟损失的主体。因此,这种形式的烟平衡式很重要。由以上计算结果可有表 B. 1。

输入	畑 Ė _{in}		内部㶲损失 I _{int}		
Ė, Ė,		Ė _{st}	Ϊ _{exh}	I _q	一 内部州顶矢 I _{int}
1 141.781	85. 478	616. 990	10.558	31, 120	568. 591

表 B.1 输入输出的㶲平衡表

单位为吉焦每时

表中的内部畑损失由两项构成,一是由烟气向工质传热的畑损失 I_{hex} ,它等于烟气提供的畑与水工质接受的畑之差再减去不完全燃烧和向环境的散热所造成的畑损失 I_o ,即

$$\begin{split} \dot{I}_{\text{hex}} &= (\dot{E}_{T_{\text{h}}} - \dot{E}_{\text{exh}}) - (\dot{E}_{\text{st}} - \dot{E}_{\text{w}}) - \dot{I}_{\text{q}} \\ &= (638.157 - 10.558) - (619.990 - 85.478) - 31.120 = 64.968(\text{GJ} \cdot \text{h}^{-1}) \end{split}$$

另一项内部佣损失是燃料燃烧的佣损失 Icomb 其值为燃料佣与温度最高时烟气㶲之差:

$$I_{\text{comb}} = E_{\text{f}} - E_{T_{\text{h}}}$$

= 1 141. 781 - 638. 157 = 503. 624(GJ • h⁻¹)

总的㶲损失了应当是内部㶲损失了,和外部㶲损失了。之和,即

$$\begin{split} \dot{I} &= \dot{I}_{int} + \dot{I}_{ext} \\ &= \dot{I}_{int} + (\dot{I}_{exh} + \dot{I}_{q}) \\ &= 568.591 + (10.558 + 31.120) = 610.269 \text{ (GI} \cdot \text{h}^{-1}) \end{split}$$

B. 1. 4. 3 支付与收益的㶲平衡

通过支付与收益的㶲平衡式可求得㶲效率和局部㶲损失率。在本例中支付㶲为:

$$\dot{E}_{p} = \dot{E}_{f} = 1 \, 141.78 \, (GJ \cdot h^{-1})$$

收益烟为:

$$\dot{E}_{g} = \dot{E}_{st} - \dot{E}_{w} = 616.990 - 85.478 = 531.512 \text{ (GJ} \cdot \text{h}^{-1}\text{)}$$

烟损失为:

$$\dot{I} = \dot{E}_{f} - (\dot{E}_{st} - \dot{E}_{w}) = 1 \ 141.781 - 531.512 = 610.269 \ (GJ \cdot h^{-1})$$

根据以上计算,可得出锅炉的第一定律效率(简称热效率) η 以及第二定律效率 η_{ϵ} (即烟效率)如下:

$$\eta = \frac{\dot{H}_{st} - \dot{H}_{w}}{\Delta h_{L}^{\theta} \cdot \dot{M}_{f}} = \frac{1\ 390.\ 831 - 352.\ 411}{25.\ 523 \times 44.\ 5} = 91.\ 428\%$$

$$\eta_{e} = \frac{E_{g}}{E_{p}} = \frac{(\dot{E}_{st} - \dot{E}_{w})}{\dot{E}_{f}} = \frac{531.\ 512}{1\ 141.\ 781} = 46.\ 551\%$$

根据本标准式(8),锅炉中的各个局部㶲损失系数如下:

排烟局部㶲损失系数:

$$\Omega_{\text{exh}} = \frac{\dot{I}_{\text{exh}}}{\dot{E}_{\text{p}}} = \frac{\dot{I}_{\text{exh}}}{\dot{E}_{\text{f}}} = \frac{10.558}{1141.781} = 0.925\%$$

不完全燃烧及散热的㶲损失系数:

$$\Omega_{\mathbf{q}} = \frac{I_{\mathbf{q}}}{E_{\mathbf{p}}} = \frac{I_{\mathbf{q}}}{E_{\mathbf{f}}} = \frac{31.120}{1.141.781} = 2.725\%$$

与燃料燃烧和炉内传热相应的局部㶲损失系数:

$$\Omega_{\text{int}} = \frac{\dot{I}_{\text{int}}}{\dot{E}_{\text{o}}} = \frac{\dot{I}_{\text{int}}}{\dot{E}_{\text{f}}} = \frac{568.591}{1.141.781} = 49.799\%$$

锅炉的目的㶲效率和它的局部㶲损失系数之间的关系为:

$$\eta_{\text{obj}} = 1 - \Sigma \Omega_i = 1 - (0.925\% + 2.725\% + 49.799\%) = 46.551\%$$

B. 1.5 评价与分析

通过以上分析可以看出,尽管锅炉的热效率很高,达到 91.428%,然而它的烟效率并不高,而且与热效率的数值相差很大,仅为 46.551%。这后一数据真实地反映了锅炉的能量有效利用率。因为在热效率中没有能反映出巨大的内部烟损失所造成的影响。

本例中内部㶲损失率高达 49.799%,其他㶲损失,如排烟损失、不完全燃烧及散热等外部㶲损失,相对来说所占比重并不大。所以,要大幅度地提高锅炉㶲效率就必须减少由燃料燃烧和炉内传热所构成的内部㶲损失,这就需要把锅炉作为能量利用的一个环节与动力生产相结合,采用诸如超临界机组、整体煤气化联合循环、燃料电池联合循环等先进技术来降低这两项不可逆性,并参照需求侧的实际需要以热电联产的方式提供相应品位的热能。

B.2 苯加氢制取环己烷工艺的㶲分析

B. 2.1 对象体系及其流程

通过图 B.2 所示流程,苯与氢反应生成环己烷。系统中的主要设备包括加氢反应器、冷凝器、高压

闪蒸罐、低压闪蒸罐、循环气压缩机和泵等。原料泵将高纯度的液态苯送入反应器,与氢气反应生成环己烷。反应产物经冷凝器冷却后,在高压闪蒸罐分成气液两相。气相主要是未反应的氢,大部分经循环气压缩机回流至反应器人口,少部分放空。高压闪蒸罐的液相主要含有环己烷,其中约三分之一经循环泵返回至反应器,其余经减压阀送入低压闪蒸罐,再次分成气液两相。其气相放空部分极少,不足进口的1%,液相则为高纯度的环己烷产物。

将本例的流程设为稳定流动体系。流程中各状态点的参数如表 B. 2 所示。其中,体系整体或各单元设备的摩尔流量满足物料平衡。

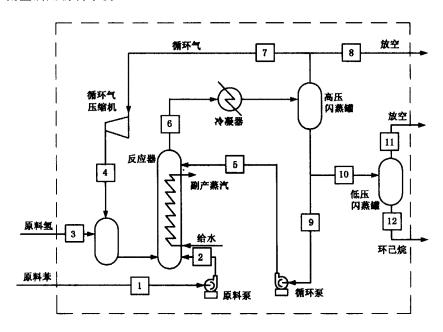


图 B.2 苯加氢制环己烷工艺流程示意图表 B.2 各状态点的温度、压力及摩尔流量

物流	1	2	3	4	5	6
温度/℃	37.8	40.4	48. 9	176. 1	49.3	200
压力/bar	10. 34	23. 1	23. 1	34. 656	13. 556	21. 72
流量/(kmol•h ⁻¹)						
H ₂	0	0	128. 55	35. 807	0. 021	39.06
N_2	0	0	0.38	3. 672	0.026	4.068
苯	41.79	41.79	0	0.002	0.037	0.099
环已烷	0	0	0	1.063	25. 601	68. 53
合计	41, 79	41,79	128. 93	40. 544	25. 685	111. 757
物流	7	8	9	10	11	12
温度/℃	48. 9	48. 9	48. 9	48.9	48. 9	48. 9
压力/bar	13, 2	11. 556	11. 556	11. 556	0.445	0. 99
流量/(kmol • h ⁻¹)						
H ₂	35.807	3, 198	0.021	0.034	0.034	0
N ₂	3. 672	0. 328	0.026	0.042	0.04	0.002
苯	0.002	0	0.037	0.06	0	0.06
环己烷	1.063	0.095	25. 601	41. 771	0. 263	41. 508
合计	40.544	3, 621	25. 685	41. 907	0.337	41.571

B. 2. 2 环境基准的说明

本例采用本标准所规定的环境基准体系。

B. 2.3 计算依据的说明

本例所涉及的化合物如表 B. 3 所示。各物质的热力学性质选自王松汉主编的《石油化工设计手册》(第一版,北京:化学工业出版社,2002),即 268 页的"有机化合物的标准热化学性质",以及 308 页的"元素及无机化合物的标准热化学性质"。

物质	分子式	聚集态	标准摩尔定压热容 $C_{p,m}^{q}/(kJ \cdot mol^{-1} \cdot K^{-1})$	标准摩尔生成 吉布斯自由能 Δ _i G ^d _m /(kJ・mol ⁻¹)	标准摩尔畑 E ⁰ _m /(kJ・mol ⁻¹)
氢气	H ₂	g	28. 8		235. 15
复气	N ₂	g	29. 2	No.	0.692
苯	C ₆ H ₆	g	82. 4	129.7	3 298. 24
苯	C ₆ H ₆	1	136.0	124.5	3 293.04
环己烷	C ₆ H ₁₂	g	106. 3	31. 8	3 905. 79
环己烷	C ₆ H ₁₂	ı	154. 9	26. 7	3 900.69
水	H ₂ O	g	33.6	-228.6	8. 53
水	H ₂ O	1	75.3	-237.1	0

表 B.3 有关物质的热力学性质

基于上述手册中的标准摩尔生成吉布斯自由能数据和本标准中表 A.3 化学元素的标准㶲,由式 (A.7)算出:

$$E_{m}^{\theta}(C_{6}H_{6},g) = \Delta_{f}G_{m}^{\theta}(C_{6}H_{6},g) + 6E_{m}^{\theta}(C) + 6E_{m}^{\theta}(H)$$

$$= 129.7 + 6 \times 410.515 + 6 \times 117.575 = 3298.24 \text{ (kJ} \cdot \text{mol}^{-1})$$

以同样的方法可求得 $E_m^{\ell}(C_6H_6,l)$ 、 $E_m^{\ell}(C_6H_{12},g)$ 、 $E_m^{\ell}(C_6H_{12},l)$ 、 $E_m^{\ell}(H_2O,g)$ 和 $E_m^{\ell}(H_2O,l)$ 。

B. 2. 4 烟平衡的计算

根据本例的情况,计算中将气体物流(如 7、8 物流等)设作理想气体混合物,液体物流(如 9、10 和 5 物流等)设作理想的液体混合物,则可利用本标准的相应公式计算出各物流的烟值。

例如,对于循环液 9 可以用公式(A.15)

$$E_{m}(T, p, x) = \sum x_{i}E_{m,i}(T, p) + RT_{0}\sum x_{i}\ln x_{i}$$

式中的下标 i 分别表示混合物中各物质的性质,其中 $E_{m,i}(T,p)$ 为系统某点温度与压力的液态纯物质的m,忽略压力的影响,根据本例的情况由式(A. 13)有:

$$E_{m,i}(T,p) = E_{m,i}^0 + \int_{T_0}^{T} \left(1 - \frac{T_0}{T}\right) C_{pm,i}^l dT$$

又如,对于循环气 9 可用公式(A.16):

$$E_{\mathrm{m}}^{\mathrm{id}}(T, p, \underline{x}) = \sum x_{i} E_{\mathrm{m.i}}^{\mathrm{ig}}(T, p) + RT_{0} \sum x_{i} \ln \left(\frac{p_{i}}{p}\right)$$

而式中的

$$E_{\mathrm{m,i}}^{\mathrm{ig}}(T, p) = E_{\mathrm{m,i}}^{\theta} + \int_{T_0}^{T} \left(1 - \frac{T_0}{T}\right) C_{\mathrm{pm,i}}^{\mathrm{ig}} \, \mathrm{d}T + RT_0 \ln \left(\frac{p}{p^{\theta}}\right)$$

基于表 B. 2 的物流信息和表 B. 3 的物性数据,可由上述式子求出各物流的㶲值。

另外,根据关于㶲平衡的输入㶲、输出㶲和内部㶲损失的关系

$$\dot{E}_{\scriptscriptstyle
m in} = \dot{E}_{\scriptscriptstyle
m out} + \dot{I}_{\scriptscriptstyle
m int}$$

可得表 B. 4 的局部以及整体的㶲平衡计算结果。为了便于比较分析,本例将内部㶲损失与外部㶲

GB/T 14909—2005

损失并列给出,得出如表 B. 4 的热力学分析结果。

表 B. 4 苯加氢制环己烷过程的㶲平衡

设 备原料泵	输人/(MJ・h ⁻¹)		输出/(MJ·h ⁻¹)	
	原料苯(1)	137 617.66	原料苯(2)	137 618, 33
	原料泵功	14.06		
			外部㶲损失	0
			内部㶲损失	13. 39
			局部㶲损失率	0.28%
循环泵	循环液(9)	99 990. 35	循环液(5)	99 990. 47
	循环泵功	0.35		
			外部㶲损失	0
			内部㶲损失	0. 23
			㶲损失分布	0%
循环气压缩机	循环气(7)	12 798. 93	循环气(4)	12 930. 93
	循环气压缩机功	165, 64		
			外部㶲损失	0
			内部㶲损失	33.64
			烟损失分布	0,70%
混合器与反应器	原料苯(2)	137 618. 33	反应器产物(6)	277 903. 78
	循环气(4)	12 930. 93	副产蒸汽	1 520. 62
	原料氢气(3)	31 229, 22		
	循环液(5)	99 990.47	外部㶲损失	0
	给水	0	内部㶲损失	2 344.55
			畑损失分布	48. 91%
冷凝器与高压闪蒸罐	反应器产物(6)	277 903. 78	循环气(7)	12 798. 92
	冷却水	0	放空气(8)	1 142.81
			循环液(9)	99 990.35
			粗环已烷(10)	163 144. 54
			冷却水	93, 33
			外部㶲损失	1 236.14
			内部㶲损失	82.70
			畑损失分布	27.51%
节流阀与低压闪蒸罐	粗环己烷(10)	163 144, 54	放空气(11)	1 034,03
			环己烷(12)	162 061. 36
			外部㶲损失	1 034.03
			内部㶲损失	49, 15
			畑損失分布	22.60%

设 备 合计	输入/(MJ・h ⁻¹)		输出/(MJ·h ⁻¹)	
	原料	168 846.88	环己烷	162 061, 36
	给水与冷却水	0	副产蒸汽	2 265.08
	压缩机与泵功	180.05	放空气	2 176. 84
			冷却水	93, 33
			外部㶲损失	2 270. 17
			内部㶲损失	2 523.66

表 B.4(续)

B. 2.5 体系效率与分析

从表 B. 4 可以得出,体系的内部与外部㶲损失之和为

$$I = I_{int} + I_{ext} = 3579.34 + 1901.06 = 5480.40 (MJ \cdot h^{-1})$$

畑损失主要集中在化学反应过程和冷凝过程,因为混合器与反应器的局部畑损失率为 46.39%,而冷凝器与高压闪蒸罐为 42.86%,节流阀与低压闪蒸罐仅占 9.86%。系统的外部畑损失占总畑损失的 34.69%,其中放空气又占外部畑损失的 90.82%。

普遍㶲效率为:

$$\eta_{\text{gen}} = \frac{\dot{E}_{\text{out}}}{\dot{E}_{\text{in}}} = 1 - \frac{\dot{I}_{\text{int}}}{\dot{E}_{\text{in}}} = 1 - \frac{3579.34}{169079.72} = 97.88\%$$

此外,可以认为动力消耗是体系的支付㶲,则体系的单位产品环己烷的支付㶲为:

$$\omega = \frac{E_p}{M} = \frac{211.37}{41.571} = 5.085 \quad (MJ \cdot kmol^{-1})$$

针对本例的具体分析结果,可采取措施提高系统的㶲效率。例如,回收利用放空气,以减少外部㶲损失,采用多台不同温位的冷凝器代替单台冷凝器,来减少换热过程的㶲损失,同时可以通过采用高效反应精馏、膜反应器等先进技术来改进生产工艺,以减少反应过程的㶲损失。